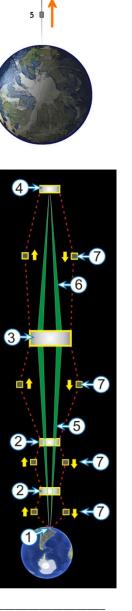
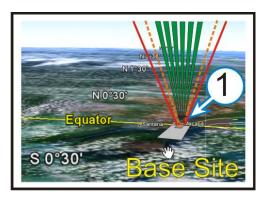


A. Background


We are not alone. There are other life forms and civilizations out there. We need to go out and meet *them there* before *they* meet us *here*. And there are many other doomsday scenarios: asteroids, gamma ray bursts, black holes, super-novas, killer viruses and bacteria, nuclear war, Sky-Net and mad scientists. As long as we all live here on this one planet, we as a species are at risk of extinction. *We must colonize other worlds to ensure our survival.*

"A **space elevator** is a method for lifting objects into Earth orbit much less expensively than chemical rockets. It has a lower cable (4) anchored to the <u>Earth</u>'s surface (6) extending into <u>space</u>. It uses a counterweight (3) 60,000 miles up to keep the cable stretched tightly (like a yo-yo). An elevator cab (5) rides up the cable to reach <u>geostationary</u> orbit (2) at 22,000 miles. (From Wikipedia....*Diagram not to scale.*)"

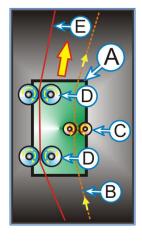
The construction of a space elevator is beyond our current technology. The cables required to build it can't be made yet. The weight of a 60,000 mile cable will snap any known existing material. But there are promising materials (i.e. carbon nanotubes) that might work.

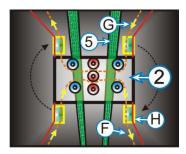

This study examines the engineering aspects of a possible space elevator, including the materials, forces, cable stresses, maintenance issues, safety concerns, costs, and the future technology required to build one. The proposed *HCG Space Elevator* is shown at right.

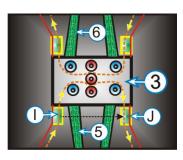
- 1) It has a **Base Station**;
- 2) Two Transfer Stations: at 2,000 & 5,000 miles;
- 3) A **GS Platform** in Geostationary Orbit;
- 4) A Counterweight;
- 5) **Tapered Support Cables** connecting the Base, Transfer Stations, and GS Platform;
- 6) **Tapered Support Cables** connecting the Platform to the Counterweight;
- 7) Four sets of elevator cabs.

4

B. Major Components

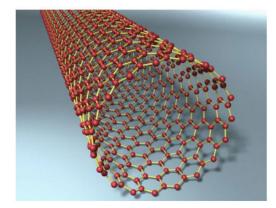



The **Base Station** (1) is in the town of Makapa, Brazil: 2009 Population 330,000. It lies on Brazil's east coast, on the equator, and on the Amazon River. This provides excellent transportation and infrastructure support.

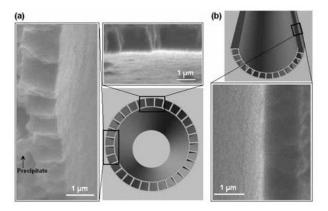

All system power is generated down here and transmitted to the elevator cabs and platforms thru Drive Ribbons. Local energy sources include river and ocean currents (using *HCG's HeliTubes* of course), wind energy (*HeliWinds*), *BioMass*, and solar (*CSC 1's*).

The 20,000 pound **Elevator Cabs** (A) carry 20,000 pounds of cargo and passengers up to the platforms. The **Drive Ribbon** (B) is powered from the Base Station at 10 mph, turning the **Genset** (C), which energizes the **Drive Wheels** (D). This moves the cab up (or down) the **Climbing Ribbon** (E). For safety, there are four drive and four climbing ribbons for each cab.

The torque between the Drive and Climbing Ribbons delivers 55,000 pounds of thrust to the Genset (C). 85% of this power is sent on to the drive wheels, and the remaining 15% powers the cab, provides a 0.2 g cab acceleration, or is lost to friction and heat. The kinetic energy is converted into potential energy as the cab rises. The cabs move at 50 mph in atmosphere but once in space, the cab weight progressively decreases (i.e. it's zero pounds at the GS Platform) and a top speed of 2,000 mph is possible. Bends in the ribbons are due to coriolis forces as the cabs accelerate and decelerate horizontally going into and leaving orbit.


Transfer Station # 1 (2) is at 2,000 miles. The **Lower Support Cables** (5) attach the Station to the GS Platform above. This is a good place for inserting payloads into low earth orbit. The Lower Drive Ribbon (F) cycles through the Station, providing Station power and also powering the Upper Drive Ribbon (G). During the layover, the Cabs (H) are switched between the upper and lower elevator ribbons. **Transfer Station # 2** is at 5,000 miles.

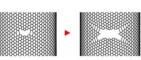
The **GS Platform** (3) is in Geostationary Orbit (22,240 miles), held there by the **Upper Support Cables** (6). The Cabs (H) dock here to transfer crew and cargo. In general, the down cab weighs less than the up cab. The drive ribbon powers the upper cabs and a Genset to power the Platform. The Upper Support Cables attaches to the **Counterweight** (4) at 60,000 miles. After docking, the cabs are moved from the up to the down tethers for the return trip (I ==> J). For safety, the Support Cables are divided into sixteen separated groups.


C. Tether

The materials we currently have are not strong enough to build the tethers. Pull the strongest steel cable off the surface of the earth and it will snap just 16 miles up. Kevlar can be pulled 160 miles up before it snaps. The highest strength-to-weight ratio materials we have now are just too weak to work. But one promising material may eventually work: the **carbon nanotube** (**CNT**). It is pure carbon, formed by rolling up a flat sheet of graphite into a cylinder. The hexagonal crystal lattice employs the strongest chemical bond we know of: the sp² carbon bond. Its diameter is usually 1.5 microns. Theoretically, a carbon nanotube can stretch hundreds of thousands of miles into space without breaking. But not yet. So far, we can't make it in lengths longer than 0.001", and we can't role it into threads much stronger than Kevlar.

A new form of CNT, the **colossal carbon nanotube** (**CCNT**), is even more promising. Although it is not stronger than CNTs, its lower density provides a higher strength to weight ratio. It is the only potential material we have, so far, that could work. Maybe. It is usually 84 microns across, with the cell columns (basically single wall CNTs) 1.4 microns across.




Carbon Nanotube

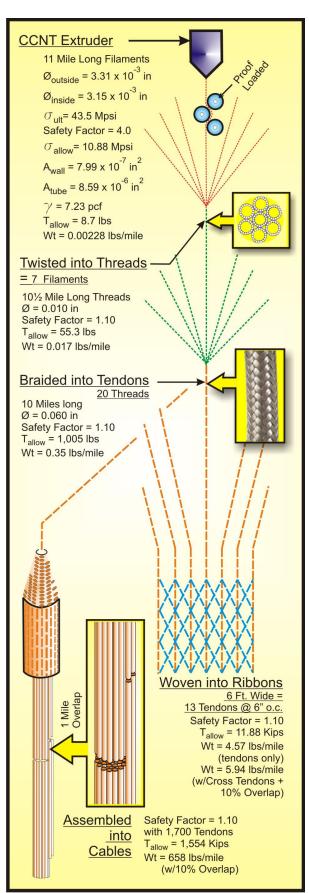
Colossal Carbon Nanotube

Theoretically, filaments of carbon nanotubes can resist tensile stresses of 43.5 Million psi (300 GPa) before they break. In comparison, our strongest steels fail at 0.40 M psi. But in practice, so far, CNTs can only reach 1 million psi due to lattice defects. These include the *Stone Walls* defect, where the regular hexagonal crystal structure is replaced by pentagonal and heptagonal arrangements. *Lattice ripping* also restricts ultimate loading of CNT Filaments. The CCNT appears to be much tougher than a single wall CNT and is expected to significantly reduce the weakening caused by these defects.

Lattice Ripping

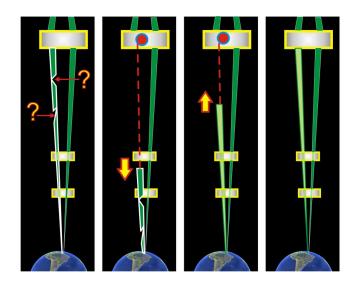
CNT's are highly corrosive. They oxidize in the atmosphere, breaking down the crystalline structure. In space, they're exposed to intense ultraviolet light from the sun and high energy cosmic rays. They will be impacted by micrometeorites and space debris. The useful life of a CCNT tether needs to be assessed. A test panel of carbon nanotubes needs to be installed on the *International Space Station* to learn the effects of long-term space exposure on CCNT's. A realistic budget for the Space Elevator depends on knowing how often to replace the tethers.

An individual CCNT filament is about the width of a human hair and, so far, can only be produced in lengths of a few millimeters. When rolled into threads, the filaments bond poorly, and 98% of the inherent strength of the CCNT is lost. Eventually, a method for the continuous extrusion of CCNTs must be found. Then the filaments can be wound into threads, the threads wound into tendons, and the tendons woven into cables and ribbons.

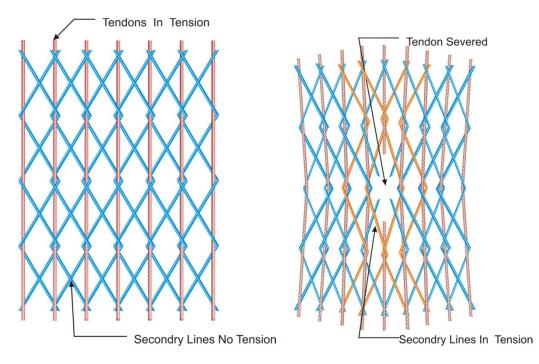

The properties of the CCNT filament presented in this report are based on the '08 work by Huisheng Peng:

Ultimate Stress = 300 GPa = 43.5 M psiSafety Factor = 4.0Design Stress = 10.88 M psiDensity = $0.116 \text{ gm/cm}^3 = 7.23 \text{ pcf}$

A *Continuos CCNT Extruder* is shown at right (hopefully developed by H. Peng by 2015, with a stress capacity of 25% of the theoretical ultimate stress?). An 11 mile long filament could be produced in four years at an extrusion rate of 1.66 ft/hour or 0.0055"/second. A single *Peng CCNT Filament* is expected to safely support 8.7 pounds. A proof-load roller must test filament strength before further fabrication.


Ten and a half mile long **Threads** are made by twisting seven 11 mile long Filaments together. Estimated allowable thread capacity is 55.3 pounds. Similarly, 10 mile long **Tendons** are made by braiding twenty 10 mile long Threads together. Braiding should reduce damages from space stuff. Tendon diameter is 0.060" and allowable loading is estimated at 1,005 pounds.

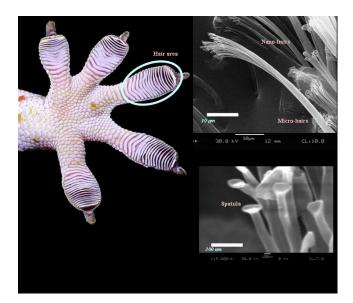
The Tendons are woven into **Elevator Drive Ribbons.** With tendons 6" on center, a six foot wide Ribbon has 13 tendons and can support a 11,880 pound load. To make a continuous Ribbon Loop, 10 mile long Ribbon segments are overlapped 1 mile to allow *Van der Waals* force to develop the full tendon capacity.



The Support Cables are tapered since even a uniform CNNT cable or ribbon cannot be lifted from the ground into GS orbit without snapping. By tapering the section, the net weight is reduced and the Elevator is structurally possible.

The support cables are made from thousands of tendons layered together with one mile overlaps. These support tethers are separated into 16 groups so that an impact with a space object will hopefully only sever one cable group. This study allows one of the Support Cables to be severed and a second to be out of service for repair. To repair a damaged Support Cable, the bad cable is detached, lowered to the ground, a new cable hoisted back up to the Platform, reattached, and put back into service (see at right).

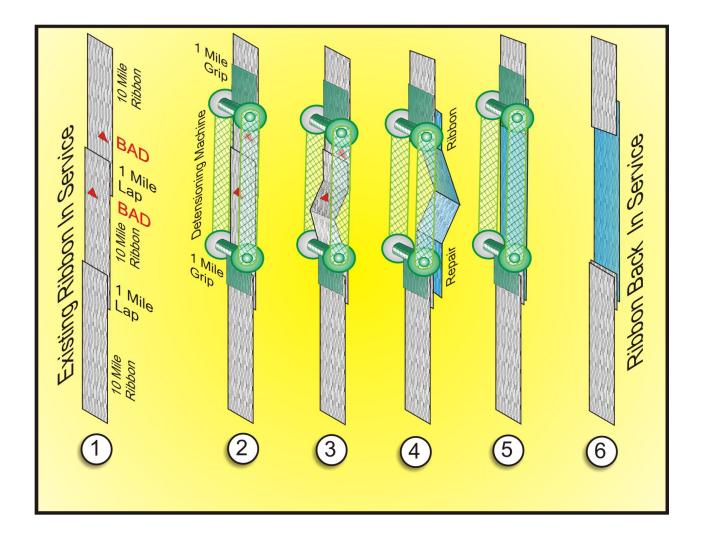
A Drive Ribbon is woven from tendons spaced 6" apart. Spacing the tendons at 6" reduces the damage effects caused by impacts from small space debris and micro-metreriotes. Even so, every ribbon will degrade in the space environment and a safety factor of 1.1 is assigned for the ribbon's design capacity. Ribbons are necessary to provide traction for the elevator drive wheels. (Gripping a round CCNT cable is nearly impossible.) Severing of a drive ribbon tendon is inevitable. To reduce the effect of this failure, a *Hoytfabric Ribbon* is proposed:



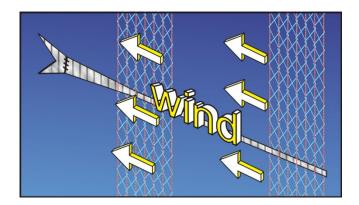
<u>Hoytfabric Ribbon</u>

Ruptured Hoytfabric

Primary tendons (shown in red) are 0.060" diameter and spaced 6" apart. When first installed, they carry all the tension loads. Secondary lines (shown in blue) are 0.020" in diameter and to keep the ribbon flat, initially slack (no tension). When (not if) a tendon is severed, the second-ary lines pick up the load and go into tension. This arrangement increases the net ribbon weight 20%, but greatly increases structural reliability of the ribbon. Multiple tendon breaks can be tolerated and the ribbon maintains its full strength. After a tendon failure, the fabric is locally distorted and the damage recorded by a passing cab. Every badly damaged section of ribbon must be replaced immediately.


Running the ribbons through conventional drive wheels will cause excessive wear. And the cab speeds involved (2,000+ mph) cannot work with any known materials. A noncontact solution, such as a linear induction motor drive, must be developed. Another approach is to employ very thin fibers found on the toes of geckos. These *setae* fibers bond to most materials using the *Van de Walls* effect. Attached to the perimeter of a 10 foot diameter wheel spinning at 5,600 rpm, this could drive the cabs at 2,000 mph.

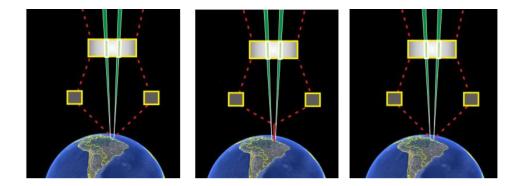
The ribbons will be constructed in 10 mile long strips, overlapping 1 mile at the joints. This overlap should allow the *Van de Walls Force* effect to develop the full design load of the ribbons across the splice area (See Step 1 next page). In general, this force is 1/1000th the normal ionic bonding force of the molecule.


For ribbon repair, the elevator stops at the damaged section and:

- **<u>Step 2:</u>** A *Detensioning Machine (Green)* straddles the repair area, attaching temporary 1 mile grip ribbons to the existing ribbon;
- **<u>Step 3:</u>** The *Detensioning Machine* contracts, relieving the tension in the existing ribbon;
- **Step 4:** The damaged section of ribbon is removed. The replacement ribbon (blue) is attached over the splice joint, overlapping 1 mile on each side;
- <u>Step 5:</u> The *Detensioning Machine* expands, putting the new ribbon section into tension;
- **<u>Step 6:</u>** The *Detensioning Machine* is removed, and the ribbon is back in service.

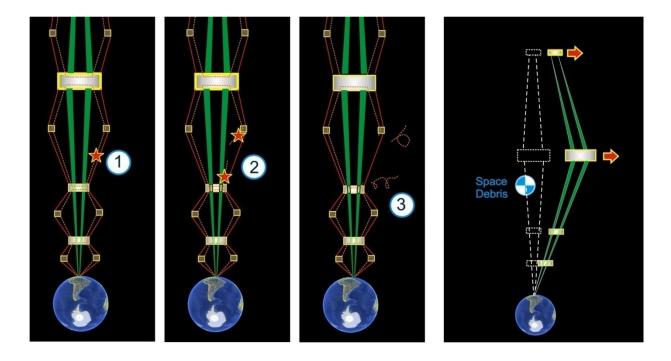
The Elevator configuration must keep the drive and climbing ribbons apart or they will tangle and/or stick to each other. The coriolis force will push the moving drive ribbon outward, but not the climbing ribbon, creating some separation. It might be necessary to positively charge the Ribbons and Cables to create a repulsive force. But this cannot interfere with the electrostatic bonding across the tether joints.

The thin ribbons will flutter in the wind, creating a vortex shedding phenomenon (remember Tacoma Narrow Bridge), and leading to premature ribbon failure. Rigid carbon fiber vanes reduce this problem, at least in moderate winds. They are computer controlled to maintain ribbon alignment and avoid twisting more than 90 degrees.



D. Accidents and Safety

CCNTs appear to be highly toxic. Contact with CCNT fibers causes problems similar to asbestos fibers. Cell damage has been reported. Jury's still out, but this remains a problem to be resolved.

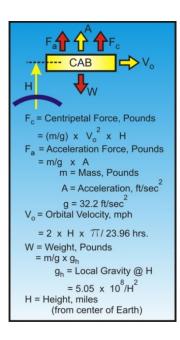

Cabs must be **Fail-Safe:** they must return to Earth safely regardless of how or where the failure occurs. When something terrible happens (and it will), the crew capsule is jettisoned, and a heat shield, parachutes, wings, and inflatable impact bags get the crew back to Earth in one piece.

Even at the best of base sites, bad weather is inevitable. For this Elevator, the lower Elevator Ribbons are held by sixteen circular tethers. These can rise up 50 miles past the stratosphere to move the ribbons out of the high winds and bad weather. Circular tethers resist dynamic wind forces better than the flat ribbons. When the bad weather passes, the ribbon supports are winched back to the ground. The Support Cable Groups, also with a circular cross-section, must also survive the high winds.

This proposed Space Elevator has four levels of elevator cabs, in sets of four at each level, and with each cab attached to eight ribbons. Eight ribbons per cab greatly reduce the risk of catastrophic failure. When a cab fails in transit, the adjacent cab is used to recover and repair the broken unit. Similarly, the Tapered Support Cables are in 16 separate bundles and spaced 500 feet apart near the ground, and 20 feet apart in space, to reduce the risk of catastrophic failure.

This Space Elevator is maneuverable. When incoming space debris or near earth objects threaten its components, the Platform and Counterweight are torqued with the drive ribbons to move the components out of harm's way. Even so, tether breakage is inevitable. The tethers are under very high tension and will immediately start contracting when broken, reaching velocities of 1,000's of miles per hour and temperatures of 1,000's °F in seconds. The ends of the snapped tethers must be immediately separated from the nearest components, allowing the pieces to contract into a ball without damaging the adjacent components. The remaining tethers are designed to take up the extra load. It would be prudent to use the Elevator for space debris control. Using simple orbital thrusters, collection spacecraft can be sent out from the Platforms to capture space debris and return it for disposal.

E. Force Analysis


The structural analysis of the tether forces is modeled in an interactive spreadsheet. Cab movements are based on the travel times tabulated at the right. Two cabs start up the elevator at 50 miles/hour until they clear the atmosphere. At the same time two cabs start down from the Platform, accelerating at 0.20 g's to reach 2,000 mph. At 50 miles, the up cabs accelerate at 0.20 g's until they also reach 2,000 mph. At 1,800 miles, they slow down and dock at Transfer Station # 1. After a 2 hour layover, the cabs start the second leg of the trip, arriving at Transfer Station # 2 eight hours after leaving home base.

The third leg of the trip takes six hours and the cabs dock at the GS Platform 16 hours after leaving Earth.

Height	Accel	Velocity	Duration	Ellapsed
Miles	g	mph	Hours	Time
Leave Base Sta	ation			
0.00		0.00	0.00	0:00:00
	0.20			
0.12		50.89	0.0047	0:00:17
		50.0		
50		50.9	0.98	0:59:05
	0.20			
235		2,000.0	0.18	1:09:56
1,000		2,000.0	0.38	1:32:52
1,814		2,000.0	0.41	1:57:18
	(0.20)			
2,000		39.1	0.18	2:08:13
	(0.05)			
2,000	(/	0.1	0.01	2:09:05
Arrive Transfe	r Station #	1	2.00	Layover
2,000				6:09:05
	0.20			
2,186		2,000.0	0.19	6:20:13
3,000		2,000.0	0.41	6:44:39
4,000		2,000.0	0.50	7:14:39
4,814	1	2,000.0	0.41	7:39:05
	(0.20)			
5,000		39.1	0.18	7:50:00
	(0.05)			
5,000		0.1	0.01	7:50:52
Arrive Transfe	r Station #	2	2.00	Layover
5,000				9:50:52
	0.20			
5,185		2,000.0	0.19	10:02:00
6,000		2,000.0	0.41	7:39:06
7,000		2,000.0	0.50	8:09:06
19,000		2,000.0	0.50	14:09:06
20,000		2,000.0	0.50	14:39:06
21,000		2,000.0	0.50	15:09:06
22,054		2,000.0	0.50	15:40:43
22,054	(0.20)	2,000.0	0.53	15:40:43
22.225	(0.20)	54.0	0.10	15.51.00
22,239	10.05	54.0	0.18	15:51:33
	(0.05)		0.00	
22,240		3.1	0.02	15:52:41
Arrive GS Platf	orm		2.00	Layover

Safety factors are applied to account for loss of strength during tether fabrication. For this study, the threads, tendons, cables and ribbons are assigned a 1.10 Safety.

Each cable tendon can support 914 pounds at a weight of 0.39 pounds per mile. A six foot wide elevator ribbon has 13 tendons and can carry 11,880 pounds at a net mass of 5.941 pounds/mile.

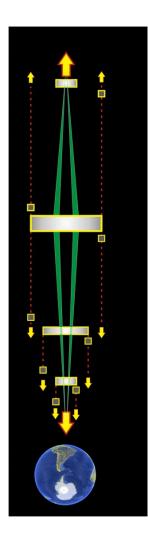
<u>Filament</u>	4.00	Safety Facto	or					
extruded as pure	CCNT 11	miles long						
Ultimate Stress =		GPa			43,516	kei	Ultimate S	tress =
Ontillate Stress =	500	0.14				M psi	= DESIGN	
A36 Steel =	0.25	GPa			36.26		A36 Steel	
Outer Diameter =		microns	8.40E-05	-			Outer Dia	
Inner Diameter =		microns	8.40E-05				Inner Dian	
Density =		gm/cm^3	8.00E-03	m		lb/CF	Density =	neter =
		microns^2	5.54E-09		8.59E-06		Outer Area	-
Outer Area = Inner Tube Area =		microns ²	5.03E-09				Inner Tube	
					7.79E-06			
Net Wall Area =		microns^2	5.15E-10	m^2	7.99E-07	100 To	Net Wall A	Area =
Water =		gm/cm^3				lb/CF	OK	
Allowable load =						lb-f	Allowable	
Unit Weight =		a statistica de la companya de	0.00228	1.5 16.000		lb/mile	Unit Weig	
Extrude 11 mile	s in 4 years	pro	duction rate =	1.66	ft/hours		0.0055	in/sec
						Out.	Allow.	Weight
						Diam.	Load	per
				ļ		inches	Pounds	Mile
Thread		1.10	Safety Factor			0.010	55.3	0.017
twisted as 7 part cable		7	filaments					
10½ miles long made		le long filament	s					
Tendon		1.10	Safety Factor			0.060	1,005	0.352
braided		20		8		0.000	1,000	01001
10 mile long, made fro	om 10¼ mil		lincuus					
							Allow.	Weight
							Load	per
Elevator Ribbon #	4	1,10	Safety Factor				Kips	Mile
		, tendons 6" oc		tendon			6,40	2.46
			or HoytRibbon					3,199
Elevator Ribbon #	3		Safety Factor	1	- chap			
	<u> </u>	1.10	Salety Pactor					
3	feet wide	, tendons 6" oc	7	tendon	S		6.40	2.46:
		+20% weight f	or HoytRibbon	+ 10% o	verlap			3.199
Elevator Ribbon #	2	1 10	Safety Factor	1				
		, tendons 6" oc		tendon			11.88	4.570
U.	reet wide				26		11.00	5.941
		+20% weight f	or HoytRibbon	+ 10% 0	veriap			5.94.
Elevator Ribbon #	1	1.10	Safety Factor					
	feet wide	, tendons 6" oc	37	tendon	5		33.81	13.000
18		+20% woight f	or HoytRibbon	+ 10% 0	verlap			16.908
18		+20% weight i	or moy chabbon					
18		+20% weight i	or noyenabbon				Kips/mile	Kips/mile
18 Cable Tendon			Safety Factor	1	add 10% wt	overlag	Kips/mile 0.914	Kips/mile 0.39

A free body diagram for the elevator cab forces is shown at left. There are three forces:

Centripetal ... $F_c \dots = f(V_o, H)$

Acceleration $F_a \dots = f$ (cab movement) Weight ... W ... = f (mass, height)

The support cables, elevator ribbons, and the four platforms are also subject to centripetal and weight forces. For this structural model, the tethers are divided into 1,000 mile increments below the GS Platform, and 10,000 mile increments for tethers above the Platform.


Page - 10 -

The first set of calculations compute the orbital data and its gravity effect, as tabulated below. From here, component weight and centripetal forces are calculated. The 125,000,000 pound Counterweight weighs only 480 kips at 60,000 miles (1 kip = 1,000 pounds). Centripetal force is 6,984 Kips. The net uplift from the Counterweight is 6,504 Kips. The GS Platform is neutral since it is in geostationary orbit. Forces for each of the two Transfer Stations and the 16 elevator cabs, including cab acceleration, are also shown. The cabs are placed to maximize ribbon forces.

	Gravity (Calcula	tions								
	C of E	Local	Local	Orbital				COMPONEN	TS		
Altitude	Height	g	g	Velocity						Accel	Net
Miles	Miles	ft/sec ²	<u>% g</u>	mph	Altitude	Mass	Wt.	Ec	Accel	Force	Force
60,000	63,963	0.12	0.4%	16,794	Miles	Kips	Kips.	Kips.	<u>% g</u>	Kips.	Kips.
55,000	58,963	0.15	0.5%	15,482				Counterwig	ht		
45,000	48,963	0.21	0.7%	12,856	60,000	125,000	479.8	6,983.9			6,50
35,000	38,963	0.33	1.0%	10,230		8		GS Platfor	m	18.C	
25,000	28,963	0.60	1.9%	7,605	22,240	500	11.44	11.44			0.
22,240	26,203	0.74	2.3%	6,880		Decer	nding (abs - in sets	of two each	side	
22,160	26,123	0.74	2.3%	6,859	60,000	60	0.23	1.56	(0.20)	(12.00)	(13.
22,000	25,963	0.75	2.3%	6,817	22,000	60	1.40	1.36	(0.20)	(12.00)	(12.
21,000	24,963	0.81	2.5%	6,554	2,000	60	26.50	0.00	(0.20)	(12.00)	14.
20,000	23,963	0.88	2.7%	6,292	1,000	60	38.26	0.00	(0.20)	(12.00)	26.
19,000	22,963	0.96	3.0%	6,029			Tra	nsfer Platfo	rm # 2		
18,000	21,963	1.05	3.3%	5,767	5,000	100	19.55	2.19			17.
17,000	20,963	1.15	3.6%	5,504			Tra	nsfer Platfo	rm # 1		
16,000	19,963	1.27	3.9%	5,242	2,000	100	44.17	1.22			42.
15,000	18,963	1.40	4.4%	4,979	2,000	100	44.17	1.22			72.
14,000	17,963	1.57	4.9%	4,716							
13,000	16,963	1.76	5.5%	4,454		Asece	nding (Cabs - in sets	of two each	side	
12,000	15,963	1.98	6.2%	4,191	22,240	80	1.83	1.92	0.20	16.00	15.
11,000	14,963	2.26	7.0%	3,929	5,000	80	15.64	0.63	0.20	16.00	31.
10,000	13,963	2.59	8.1%	3,666	2,000	80	35.34	0.03	0.20	16.00	50.
9,000	12,963	3.01	9.3%	3,404	100	80	76.11	0.28	0.20	16.00	91.
8,000	11,963	3.53	11.0%	3,141		00	, 0111	0.20	0120	10.00	
7,000	10,963	4.20	13.1%	2,879				Data Input on D	esign Diagram (DNLY!	
6,000	9,963	5.09	15.8%	2,616							
5,000	8,963	6.29	19.5%	2,353		(2	2) Distribu	te Counterweig	ht Uplift Forces		
4,000	7,963	7.96	24.8%	2,091				Support Cables =		Kips	
3,000	6,963	10.42	32.4%	1,828		10	Keach t	o elev. Ribbon =	10.0	Kips	
2,000	5,963	14.20	44.2%	1,566							
1,000	4,963	20.50	63.8%	1,303							
100	4,063	30.59	95.1%	1,067		TOTAL W	Veight o	of Tethers =	146,844	Tons	
0	3,963	32.15	100.0%	1,041							
quations											
	Orbital Vel	ocity = Ork	bital Circu	mference/(23 H	ours - 56 Min	utes) = 2 * C	OE Heigh	t * pi /23.93 hou	rs		
	Local g = 5.	05E8/Heig	ght^2)								
	Weight = N		-								
	Centripital	Force = Cf	f = m * v^2	/r = Mass /G * V	elocity^2/H	eight wh	nere Mass	in pounds, Veloc	ity in ft/sec, Hei	ght in feet	
	Tether Ten	sion = Cu	mmulativ	e Centripital For	ces - Cumm	ulative Wei	ght + Cab	Acceleration			
	Sign Conve	ention : T	ension an	d Forces that IN	CREASE ten	sion are po	sitive				
	Cable Mass	= Segmer	nt Length i	n miles x Numbe	r of Tendon	s x Unit Wei	ight per m	ile			
	Cable Weig	ht = Cable	Mass x %	Local Gravity							

The forces above the GS Platform are calculated first, generating a net uplift. Forces below the GS Platform are calculated next, generating a net downward force. For stability, the up forces must be larger than the down forces.

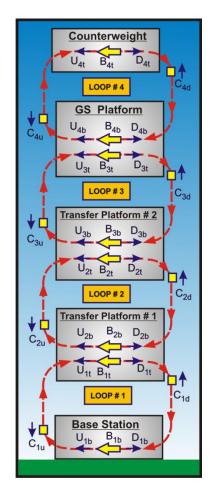
Calculations for the Elevators are shown at right. The elevator ribbon tensions for each set of cabs is first calculated hanging from the Platform and Transfer Stations as shown below.

			Liev		ibbons -	10	op, 10	DOWN		
Tet	her				10 Kps/Rib	bon P	/T			
Len	gths				Asce	ndin	g	Dec	enc	ling
				-	-					
Altitude	Length	Mass	Wt.	Ec	Tension		+ CW	Tension		+ CW
<u>Miles</u>	<u>Miles</u>	<u>Kips</u>	<u>Kips</u>	<u>Kips</u>	Kips		<u>т. к</u>	Kips		<u>т, к</u>
60,000	2,500	128.0	0.5	7.1	6.7		16.66	(6.7)	(3)	3.33
55,000	7,500	383.9	1.7	19.8	24.7		34.7	11.4		21.4
45,000	10,000	511.8	3.4	21.9	43.2		53.2	29.9		39.9
35,000	10,000	511.8	5.3	17.4	55.4		65.4	42.0		52.0
25,000	6,380	326.5	6.1	8.3	57.5		67.5	44.2		54.2
22,240	1,380	70.6	1.6	1.6	73.4	(3)	83.4	44.2		54.2
		Total M =	1,933	Tons	Allow T =		6.4	Kips		
		W # 4, Ft. =	3			h # 4 V	Veight :	= 3.2	#/1	Vile
		Allow	Ribbon #	4 Load =	6.4		Kips			
22,240	40	4.98	0.11	0.11	141.8		151.8	98.9		108.9
22,160	120	14.92	0.34	0.34	141.8		151.8	98.9	(3)	108.9
22,000	580	72.09	1.68	1.63	141.8		151.8	110.8		120.8
21,000	1,000	124.30	3.13	2.71	141.8		151.8	110.8		120.8
20,000	1,000	124.30	3.40	2.60	141.4		151.4	110.3		120.3
19,000	1,000	124.30	3.70	2.49	140.6		150.6	109.6		119.6
18,000	1,000	124.30	4.05	2.38	139.4		149.4	108.3		118.3
17,000	1,000	124.30	4.44	2.28	137.7		147.7	106.7		116.7
16,000	1,000	124.30	4.90	2.17	135.5		145.5	104.5		114.5
15,000	1,000	124.30	5.43	2.06	132.8		142.8	101.8		111.8
14,000	1,000	124.30	6.05	1.95	129.4		139.4	98.4		108.4
13,000	1,000	124.30	6.78	1.84	125.3		135.3	94.3		104.3
12,000	1,000	124.30	7.66	1.73	120.4		130.4	89.4		99.4
11,000	1,000	124.30	8.72	1.62	114.5		124.5	83.4		93.4
10,000	1,000	124.30	10.01	1.52	107.4		117.4	76.3		86.3
9,000	1,000	124.30	11.62	1.41	98.9		108.9	67.9		77.9
8,000	1,000	124.30	13.64	1.30	88.7		98.7	57.6		67.6
7,000	1,000	124.30	16.24	1.19	76.3		86.3	45.3		55.3
6,000	1,000	124.30	19.67	1.08	61.3		71.3	30.2		40.2
5,000	500	62.15	12.15	0.49	42.7	(3)	52.7	11.7		21.7
5,000	500	91.39	17.87	0.72	210.1		220.1	159.1	(3)	169.1
4,000	1,000	182.79	45.27	1.27	192.9		202.9	142.0		152.0
3,000	1,000	182.79	59.21	1.11	148.9		158.9	98.0		108.0
2,000	500	91.39	40.37	0.48	90.8	(3)	100.8	39.9		49.9
2,000	500	266.87	117.88	1.39	809.0		819.0	731.6	(3)	741.6
1,000	950	507.06	323.31	2.20	692.5		702.5	600.7		610.7
100	500	266.87	253.90	0.95	371.4	(3)	381.4	279.5		289.5
0	50	26.69	26.69	0.09	26.6	_	36.6	26.6		36.6
		Total M = #3 W ft=	1,879 8	Tons	n # 3 #/mi=		70	All. Load K =		15.
		# 2 W ft=	12		n # 2 #/mi=			All. Load K =		22.8
		# 2 W It=	36		n # 1 #/mi=			All. Load K =		66.7
					to Ribbon T			Loau n =		00.1
		Stabilit			Post Ten			T)		
Tot	al Weight	t below GS Pla		11,178				Platform =		2,492
			eration =	12.00				celeration =		4.00
Total C	ent. Force	below GS Pla			otal Cent. Fo	orce a				14,465
			NET =	9,728				NET =		11,977
	Cab	le + Ribbon Te	ensions =	9,842	(able	+ Ribbo	n Tensions =		11,975

There are 4 drive and 4 climbing ribbons for each of two cabs. They are combined and analyzed as a single force (i.e. 16 ribbons are treated as one tether for each set of two cabs). The up and down ribbons are computed separately. Next, the ribbons are attached to a lower structure and a tension of 10 kips added to each set of ribbons to stabilize it.

The next step is to normalize the belt forces so they sum to zero around each drive loop. The diagram at right lays out the process. At the Counterweight, the upper Loop Ribbon # 4 passes through a Genset to produce station power. With a 5 kip ribbon load moving at 10 mph:

This 5 Kip load across the genset is designated Load B_{4t} . The upper left ribbon tension U_{4t} plus B_{4t} must equal the upper right tension D_{4t} . From the initial ribbon calcs:


$$U_{4t} + B_{4t} = D_{4t}$$

16.66 K + 5.0 K = 3.33 . Delta = 18.33 Kips

Half this tension imbalance is added to the right ribbon, and half released from the left ribbon:

The lower end of Loop #4 passes through the GS Platform. The belt force here, B_{4b} , must drive the upper genset, Load B_{4t} , and also move the two cabs. Cab C_{4u} must be pulled up by the ribbons, while Cab C_{4d} acts like a typical elevator counterweight, helping to pull the other Cab up. Belt force B_{4b} is computed as 7.58 Kips as tabulated at right. The imbalance here is 36.81 Kips and again normalized 50/50.

This causes the drive ribbon to become too slack, and an additional 10 Kips is added to both sides to stabilize the ribbons. Loop # 1 requires 50 Kips extra tension to stabilize it.

The remaining belt calcs are also shown in this table. A 500 KW genset is provided at the GS Platform, and 75 KW gensets power the Transfer Stations. At the Base Station, the winches that power the loop drive ribbons deliver 123 Kips (B_{1b}) of thrust to power the entire Elevator.

			Initial	Adjust
Force			Delta	Tension
B4u =	5	Kips	18.33	
5	= 75 KW ge	nset		10
B4d =	7.58	Kips	36.81	
5	= B4u			
2.6	= C4u-C4d			
B3u =	57.58	Kips	100.55	
7.58	= B4d			20
50	= 500 KW ge	enset		
B3d =	76.63	Kips	107.64	
57.58	= B3u			
19.1	= C3u-C3d			
B2u =	81.63	Kips	132.55	
76.63	= B3d			
5	75 KW gense	et		0
B2d =	118.05	Kips	168.96	
81.63	B2u			
36.4	= C2u-C2d			
B1u =	123.05	Kips	200.37	
118.05	= B2d			
5	75 KW gens	et		50
B1d =	123.05	Kips	123.05	
123.05	B1u			
65.6	= C1u-C1d			

The normalized Drive Ribbon tensions are shown at right. Peak tension is 892 Kips just below Transfer Platform # 1 on the down side of Loop # 1. Drive loop # 4 has the lowest tension at 17 Kips.

These disproportionate ribbon forces are not sound engineering, and a more balanced load between the three lower drive loops is clearly preferable. This would allow a single width ribbon for these three drive loops, simplifying construction and maintenance.

Several alternative configurations were examined:

- 1) Add a third Transfer Station @ 750 miles;
- 2) Lower the two Transfer Stations to 4,000 and 750 miles.

Both of these schemes are preferable to the one studied here, and a combination of the two is probably the best solution. However, this study is not intended to produce an optimized Elevator design. Its primary purpose is to demonstrate that a looped drive belt can power the Elevator. The next engineering study (assuming there is one?) should begin with a detailed assessment of the operational parameters of the Elevator. This could establish where the best platform locations should be for completing space missions.

(**But** the HCG Space Elevator is intended as the second step in a broader vision of the conquest of space. The major lift required for this elevator is for proposed Step # 3: launching the 25,000,000 pound HCG Space Ship 1:

Descending Ascending Altitude Cable Cable Miles Tension Tension Tension 60,000 17.49 22.49 55,000 34.31 41.75 45.000 50.40 62.74 35,000 60.07 77.31 25,000 59.77 81.90 22,240 75.00 82.58 22,240 179.13 121.56 22,160 121.54 179.15 22,000 191.14 121.50 21,000 191.30 121.25 20,000 120.63 191.09 19,000 119.62 190.49 18.000 118.21 189.49 17,000 116.34 188.03 16,000 113.97 186.07 15,000 111.03 183.55 14,000 107.46 180.38 176.49 13 000 103.15

15,000	105.15	170.49			
12,000	98.00	171.75			
11,000	91.87	166.03			
10,000	84.57	159.14			
9,000	75.87	150.85			
8,000	65.45	140.85			
7,000	52.90	128.71			
6,000	37.65	113.86			
5,000	18.86	95.48	76.63	B3d	
5,000	153.79	235.42	81.63	B2u	
4,000	130.57	224.34			
3,000	80.50	186.40			
2,000	16.33	134.37	118.05	B2d	
2,000	768.78	891.83	123.05	B1u	1
1,000	671.63	741.51			
100	367.92	403.00			
0	25.07	148.12	123.05	B1d	

Normalize Loop Tension

Normalize

Final

Delta

5.00

7.58

57.58

Normalize

1) All forces in Kips (= 1,000 pounds)

http://www.hicon.us/gpage28.html

And mankind will be able to travel between the stars!)

Check

B4u

B4d

B3u

With the normalized loads for the ribbon loops computed, their safety is next evaluated (see below). The tensions in normalization table are increased 5% for the right side (the pulling side) and $2\frac{1}{2}\%$ on the left side to allow for friction losses. To determine the actual force for each ribbon, these tensions are divided by 16. One of the cab ribbons is severed and the safety for of the remaining 7 ribbons computed. This provides an additional safety factor when (not if) one of the elevator ribbons is severed. By adjusting the ribbon width, a stable elevator system is designed. Loop # 1 is 36 feet wide, Loop # 2 is 12 ft., # 3 8 ft., and # 4 is 3 feet wide.

Ur					Design Elev	ator F	libbon					_
Ur												
	Cabs	- 16 Rib	bons						Down	Cabs - 1	6 Ribb	ons
Altitude	Total								Total	Ribbon		
Miles	Tension	Ribbon	Safety						Tension	Tension	Safety	
60,000	Kips	Tension	Factor	OK?		Coun	terweight		Kips	Each-K	Factor	ОК
60,000	17.93	1.12	5.02				Cab #4 Dn	(1)	23.62	1.48	3.81	
55,000	35.16	2.20	2.56						43.84	2.74	2.05	
45,000	51.66	3.23	1.74						65.87	4.12	1.37	
35,000	61.57	3.85	1.46						81.17	5.07	1.11	
25,000	61.27	3.83	1.47						86.00	5.37	1.05	
22,240	76.88	4.80	1.17		Cab #4 Up	(2)			86.71	5.42	1.04	
22,240	Up C	Cabs - 1	6 Ribbo	ons	(SS Pla t	form		Down	Cabs - 1	6 Ribb	ons
22,240	124.6	7.8	1.8						188.1	11.8	1.2	
22,160	124.6	7.8	1.8				Cab #3 Dn	(1)	188.1	11.8	1.2	
22,000	124.0	7.8	1.8					(-)	200.7	12.5	1.1	
21,000	124.3	7.8	1.8						200.9	12.5	1.1	
20,000	123.6	7.7	1.8						200.6	12.5	1.1	
19,000	122.6	7.7	1.8			2			200.0	12.5	1.1	
18,000	121.2	7.6	1.8						199.0	12.4	1.1	
17,000	119.2	7.5	1.8						197.4	12.3	1.1	
16,000	116.8	7.3	1.9						195.4	12.2	1.1	
15,000	113.8	7.1	1.9						192.7	12.0	1.1	
14,000	110.1	6.9	2.0						189.4	11.8	1.2	
13,000	105.7	6.6	2.1						185.3	11.6	1.2	
12,000	100.5	6.3	2.2						180.3	11.3	1.2	
11,000	94.2	5.9	2.3						174.3	10.9	1.3	
10,000	86.7	5.4	2.5						167.1	10.4	1.3	
9,000	77.8	4.9	2.8						158.4	9.9	1.4	
8,000	67.1	4.2	3.3			_			147.9	9.2	1.5	
7,000	54.2	3.4	4.0						135.1	8.4	1.6	
6,000	38.6	2.4	5.7						119.6	7.5	1.8	
5,000	19.3	1.2	11.3		Cab #3 Up	(2)			100.3	6.3	2.2	
5,000		-				Trans.	Station # 2					
5,000	157.6	9.9	2.0				Cab #2 Dn	(1)	247.2	15.4	1.1	
4,000	133.8	8.4	2.4						235.6	14.7	1.2	
3,000	82.5	5.2	3.9						195.7	12.2	1.4	
2,000	16.7	1.0	19.2		Cab #2 Up	(2)			141.1	8.8	1.9	
2,000		-				Trans.	Station #1			12	10000	
2,000	788.0	49.3	1.2			-	Cab #1 Dn	(1)	936.4	58.5	1.0	
1,000	688.4	43.0	1.4			(2)			778.6	48.7	1.2	
100	377.1	23.6	2.5		Cab # 1 Up	(2)			423.2	26.4	2.2	
0	25.7	1.6	36.5						155.5	9.7	6.0	

The tension loads on the Tapered Support Cables are designed next (see table at right). Loads are summed from the Counterweight down to the GS Platform. The Upper Cable has a tension of 11,857 Kips at the GS Platform, decreasing to 6,957 Kips at the Counterweight. The Upper Cable tapers from 15,500 tendons at the Counterweight to 9,000 at the GS Platform.

The Support Cable tension below the GS Platform is summed from the ground up The loads from the Transfer Stations and the attached elevator ribbons # 1 and # 2 are add ed at 2,000 and 5,000 miles. The 1,064 Kip uplift from the Upper Support cable is then added as a post-tensioning load. The Lower Support Cable carries 1,736 Kips at the ground and 10,644 Kips at the GS Platform. The number of tendons taper from 1,900 at the Base Station to 13,700 at the GS Platform. Uplift at the ground and at the GS Platform are both over 1,000 Kips, providing a reasonable tension to keep the Elevator stable.

The table on the next page evaluates the safety of the support cables. This is a five step iterative process:

- 1) Size the CW;
- 2) Size the Upper Cable;
- 3) Size the Lower Cable;
- 4) Check Uplift;

Space Elevator Study

5) Go back to Step # 1 until stable.

			Supp	ort Cal	oles - Ta	pered	[en	dons	
Tet	ner		Carries	Counterv	veight Upli	ft Load - E	levat	or P/T	
Leng	ths								
Altitude	Length	#	Mass	Wt.	Ec	T			T-Allow
Miles	Miles	Tendons	Kips	Kips	Kips	Kips			Kips
60,000	2,500	9,000	8,700	33.4	486.1	6,957	(2)		8,224
55,000	7,500	11,000	31,900	144.1	1,643.0	8,456	(-/		10,052
45,000	10,000	13,000	50,267	329.3	2,149.9	10,276			11,880
35,000	10,000	14,600	56,454	584.0	1,921.3	11,614			13,342
25,000	6,380	15,000	37,004	692.8	936.2	11,857			13,707
25,000									
22,240	1,380	15,500	8,271	189.2	189.3	11,857			14,164
							_	T+	
		#	Mass	<u>Wt.</u>	<u>E</u> c	т		Uplift	T-Allow
		<u>Tendons</u>	<u>Kips</u>	<u>Kips</u>	Kips	<u>Kips</u>		<u>Kips</u>	Kips
22,240	40	13,700	212	4.9	4.86	9,601		10,644	12,519
22,160	120	13,700	636	14.6	14.5	9,601		10.644	12,519
22,000	580	13,633	3,058	71.2	69.3	9,601		10,644	12,459
21,000	1,000	13,567	5,246	132.2	114.4	9,599		10,642	12,398
20,000	1,000	13,500	5,220	142.8	109.3	9,581		10,625	12,337
19,000	1,000	13,460	5,205	155.0	104.4	9,548		10,591	12,300
18,000	1,000	13,420	5,189	168.9	99.6	9,497		10,540	12,264
17,000	1,000	13,380	5,174	184.9	94.7	9,427		10,471	12,227
16,000	1,000	13,340	5,158	203.3	89.9	9,337		10,381	12,191
15,000	1,000	13,300	5,143	224.6	85.2	9,224		10,267	12,154
14,000	1,000	13,040	5,042	245.4	79.1	9,085		10,128	11,916
13,000	1,000	12,780	4,942	269.7	73.2	8,918		9,962	11,679
12,000	1,000	12,520	4,841	298.4	67.5	8,722		9,765	11,441
11,000	1,000	12,260	4,741	332.5	62.0	8,491		9,534	11,204
10,000	1,000	12,000	4,640	373.8	56.6	8,220		9,264	10,966
9,000	1,000	12,120	4,686	438.0	53.1	7,903		8,947	11,076
8,000	1,000	11,360	4,393	482.0	45.9	7,518		8,562	10,381
7,000	1,000	10,600	4,099	535.6	39.2	7,082		8,126	9,687
6,000	1,000	9,840	3,805	602.0	33.1	6,586		7,629	8,992
5,000	500	9,300	1,798	351.5	14.1	6,017	(1)	7,060	8,499
5,000	500	8,200	1,585	309.9	12.4	5,273		6,316	7,493
4,000	1,000	8,100	3,132	775.7	21.79	4,975		6,019	7,402
3,000	1,000	6,840	2,645	856.7	16.09	4,221		5,265	6,251
2,000	500	3,700	715	316.0	3.73	3,381	(1)	4,424	3,381
2,000	500	3,700	715	316.0	3.73	1,365		2,408	3,381
1,000	950	2,800	1,029	655.8	4.46	1,053		2,096	2,559
100	500	1,990	384.7	366.0	1.37	401		1,445	1,819
0	50	1,900	36.7	36.73	0.13	37		1,080	1,736
		Total M = We	143,032 ight per Te	Tons andon =	0.39	Pounds/N	/ile		
			ble Tendo			Kips/Tend			
		1) Add Tra						bon Forc	es here
	NET U	PLIFT @ (1,064	Kips			
			e Net Uplif			1			
		0 CC 01 - 1			20				

@ GS Platform to Lower Tethers

10 Kips to each lower & middle elev. Ribbon =

Apply to Lower Support Cable = 1,043.5 Kips

10.0 Kips

			Design Suppo						
							Tension		
						Total	per ea.		
Altitude						Tension	Tendon	Safety	
Miles						Kips	Kips	Factor	0
60,000		Wt, Kips =	125,000	Counterw	eight				
60,000	# U	pper Loop Tendons =	9,000			6,957	0.77	1.03	
55,000	# U	pper Loop Tendons =	11,000			8,456	0.77	1.04	
45,000	# U	pper Loop Tendons =	13,000			10,276	0.79	1.01	
35,000	# U	pper Loop Tendons =	14,600		1	11,614	0.80	1.01	
25,000		pper Loop Tendons =				11,857	0.79	1.01	
22,240	# U	Ipper Loop Tendons =	15,500			11,857	0.76	1.05	
22,240	Uplift	Kips	ОК	GS Plat	form				
22,240			13,700			10,644	0.78	1.03	
22,160		# Support Tendons =				10,644	0.78	1.03	
22,000			13,633			10,644	0.78	1.02	
21,000			13,567			10,642	0.78	1.02	
20,000		# Support Tendons =				10,625	0.79	1.02	
19,000			13,460			10,591	0.79	1.02	
18,000			13,420			10,540	0.79	1.02	
17,000			13,380			10,471	0.78	1.02	
16,000			13,340			10,381	0.78	1.03	
15,000		# Support Tendons =	13,300			10,267	0.77	1.04	
14,000			13,040			10,128	0.78	1.03	
13,000			12,780			9,962	0.78	1.03 1.03	
12,000 11,000			12,520 12,260			9,765 9,534	0.78 0.78	1.03	
10,000		# Support Tendons =		_		9,264	0.77	1.04	
9,000			12,120			8,947	0.74	1.08	
8,000			11,360			8,562	0.75	1.06	
7,000			10,600			8,126	0.77	1.04	
6,000			9,840			7,629	0.78	1.03	
5,000		# Support Tendons =	9,300			7,060	0.76	1.05	
5,000				Trans. Stati	on # 2				
5,000		# Support Tendons =	8,200			6,316	0.77	1.04	
4,000			8,100			6,019	0.74	1.08	
3,000			6,840			5,265	0.77	1.04	
2,000		# Support Tendons =	6,500			4,424	0.68	1.17	
2,000				Trans. Stati	on # 1				
2,000		# Support Tendons =				2,408	0.65	1.23	
1,000			2,800			2,096	0.75	1.07	
100			1,990			1,445	0.73	1.10	
0		# Support Tendons =	1,900			1,080	0.57	1.41	
			Eart		TE : Tendon Sa	afety Fact	or Based o	n	
			Calced		2 of	16 cable	bundles or	ut of serv	ice
Above Platf	orm, Kips =	12,020.6	UPLIFT		SF = (1	4/16) *(1	Allow) / (T	alced)	
NET UPI	LIFT, KIPS =	1,063.5	1,063.5						
Palau Dlat	orm, Kips =	10.957.05	Circular Reference P	rohlem	Adjustable	Cells =			

The tendon safety factor is based on fourteen of sixteen cable groups in service: one is assumed severed and a second one is under repair.

F. Costs

The bottom line is **MONEY**: the cost to send one pound of payload into GS orbit. Chemical rockets generally run \$ 20,000/pound and are notoriously unreliable. There are many other launch proposals on the drawing boards, but only the proposed *HCG ICC-1 Launch Vehicle* (<u>http://www.hicon.us/gpage26.html</u>) can launch a GS payload for less than \$ 3,000 a pound with a 99+% reliability.

The first step is to build a Base Station on a 100 acre site, with a 100,000 square foot Operations Building and a 10 MW power plant. Next step is to build a $1/100^{th}$ size *Construction Elevator*. Hopefully, it can be done for $1/4^{th}$ the cost of the final unit. Estimated weight is 1,300,000 pounds. Gradually, this small elevator will be expanded into the big one.

The major cost item for the *HCG Space Elevator* is the lift costs: \$ 3.8 B for the temporary elevator and \$ 22 B for the final. The next most expensive item is the CCNT tethers: \$ 3.7 B. Hopefully they will cost only \$ 100/pound to manufacture in 2020. The 2009 price of carbon fiber is \$ 10/pound.

The budget for the proposed *HCG Space Elevator* is on the next page. Construction cost is estimated at \$ 41 B, with annual operating costs estimated at \$ 4.5 B/year. The eight cabs can lift 142,000 pounds a day and 52,000,000 pounds per year into Orbit at an estimated cost of around \$ 100 per pound. That's a lot of satellites and at least one Star Ship every year!

G. Conclusions

We <u>can</u> build this by 2025. We <u>must</u> build this, or something similar, for the very survival of our species. With this *HCG Space Elevator*, we will have the ability to orbit 52 Million pounds/year for only \$ 100 per pound. And *Homo Sapiens* will be on the way to the conquest of space. *"The final frontier."*

The *Proposed HCG Space Elevator* presented in this report will not resemble the first **Space Elevator** actually built. It is intended to show feasibility, establish realistic budget costs, and to encourage the World to immediately fund the research needed to get things started.

<u>References</u>: (Note: Data in this report came off these web sites and the links provided)

http://en.wikipedia.org/wiki/Space_elevator A good starting point.

http://en.wikipedia.org/wiki/Carbon_nanotube Background on CNT's.

http://en.wikipedia.org/wiki/Colossal_carbon_tube Background on CCNT's.

http://www.mse.ncsu.edu/research/zhu/papers/CNT/PRL-CCTs.pdf Peng's Paper

http://www.spaceelevatorblog.com/ up-to-date web blog

Ha	wai	i

				Elevator			
				Unit		Total	
Iter	n <u>Quantity</u>	Units		Cost		Cost	Comments
Base Site							
Land + Sitewor	(100	Acres	\$	250,000	\$	25,000,000	
Buildin	g 100,000	SF	\$	400	\$	40,000,000	
Power Plan	nt 10	MegaWatts	\$	2,500,000	\$	25,000,000	HeliTubes, HeliWinds
Drive Winche	s 4	each	\$	500,000	\$	2,000,000	2,500 HP
Equip., Spare Par	s	LS			\$	10,000,000	
				Subtotal =	\$	102,000,000	
Space Elevator		Build out f	ror	n Temporar	v Fl	evator	
Tethe	s 146,844	Tons	\$	20,000	\$	2,936,884,284	\$ 100/lb
Transfer Statio		lbs	\$	750	\$	150,000,000	Two
GS Platfor		lbs	\$	750	Ś	375,000,000	
Counterweig		lbs	\$	25	\$	3,125,000,000	
Lift into Spac			\$	175	-	22,023,197,737	Using Tempory Elevator
Elevator Cal		each		2,500,000	\$	50,000,000	4 spares
Emergency Lift Cable			1	1,000,000		16,000,000	to avoid bad weather
Detension Machin			1 10	10,000,000	\$	20,000,000	
Spare Tethe		Tons	Ś		Ś	734,221,071	Replace 1/4 per year
				Subtotal =	\$	29,430,303,093	,,,,,,
Temporary Eleva	tor	1/100 the		acity of the	fin		i.e. 200# cab capacity to sta
Bui		lbs	Lap	acity of the	\$	7,383,075,773	1/4 the cost of the final
Lauch into Orb		lbs	\$	3,000	Ş	3,775,405,326	Use ICC-1 Launch Vehicle
Lauch into Orb	IL 1,238,408	105	Ş	3,000		11,158,481,100	Ose ICC-1 Launch Venicle
				TOTAL =	\$	40,690,784,192	
Annual Costs							
Sta	ff 500	people	\$	200,000	\$	100,000,000	
0&	И	LS			\$	100,000,000	
Replace Tethers & Cable	s	LS			\$	734,221,071	25% each year
Cap Loa	n					\$4,144,000,000	8%, 20 years
				TOTAL =	\$	5,078,221,071	per year
Payload Orbit Co							
	18 Hours/trip x			and the second se	1		
	142,933	#/day		52,206,400	#/y	/ear	
	COST =	\$ 97.00	-	r pound	-		